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On the governing equations in relaxing media models and 
self-similar quasiperiodic solutions 

. ,  
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Subbotin GeophysicG Institute of the Ukrainian Academy of Sciences Division of 
Geodynamics of Explosion, Lenin Street 63 B, 252054 Kiev. Ukraine 

Received 19 October 1992 

Absbact. Dynamical equations of state for multicomponent relaxing media have been pro- 
posed. Using special ansatz, systems of hydrodynamical equations, closed by the equations 
of state proposed in this work, have been reduced to ODE systems, which were shown to 
possess, under certain conditions, sets of quasiperiodic solutions. 

1. Introduction 

Analysis of various numerical experiments~ with different continuum mechanics equa- 
tions employed to describe relaxing high-rate processes in active media [l, 21 enables 
one to determine that the qualitative behaviour of their solutions is strongly influenced 
by the properties of the governing equations. 

Multicomponent condensed media state equations are constructed, as a rule, by 
means of pure mechanical models, being postulated without rigorous thermodynamical 
substantiation. Because an equation of state describing properly condensed media in 
high-rate processes for a Wide range of thermodynamical parameters does not exist, it 
seems reasonable to treat phenomena of relaxation as unknown chemical reactions. 
Using such an approach it is possible~to obtain restrictions on the governing equations 
by means of non-equilibrium thermodynamics methods. 

Restrictions on the state and kinetic equations could also be obtained from symmetry 
principles. On the other hand, when continuum mechanics equations admit a subse- 
quently large symmetry group. it is possible to reduce the number of independent 
variables and, in some special cases, to pass from partial differential equations (PDE) 
to a system of ordinary differential equations (ODE). This finalIy gives the opportunity, 
taking advantage of qualitative theory methods, to connect properties of self-similar 
solutions of the initial system with features of the governing equations. 

In the second part of this work, a system of PDE aimed at describing relaxation 
processes in fluids is analysed. From the general system, under certain conditions, a 
dynamical equation of state, included as a particular case of the generalized Maxwell 
equation and Lyakhov’s equation [3], have been obtained. 

In the third section, based on the group classification of hydrodynamical equations 
for active media performed in [I, 51, ansatz enabling one to pass from PDE to ODE of 
low dimensions have been proposed. The dynamical systems obtained were investigated 
by means of qualitative theory methods. This method shows that the initial system 
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possesses families .of self-similar quasiperiodic solutions for a wide class of governing 
equations. 

V A Danylenko et a1 

2. State  and^ kinetic equations h relaxing media models 

Analysis ofvarious experimental studies of wave propagation in multicomponent active 
media for constant temperature, pressure and number of molal particles (components) 
[3] enables one to conclude thar some internal state variations (e.g. of volume) are 
possible. The molal number is the ratio of matter mass to molal mass (molecular 
weight). Phenomena arising then as an after-action or relaxation process might be 
formally described as unknown chemical reactions with the corresponding degree of 
reaction conipleteriess. The reaction completeness degree is an internal state parameter 
added to the rest of the parameters in such a way that the internal state is defined 
macroscopically, though the relaxation mechanism associated with the internal para- 
meters remainsunknown. In this case; the non-equilibrium state of the system must be 
characterized  not^ only by extemal parameters (volume, temperature), but also by an 
internal parameter [2,5] ,  which we denote as A. 

When treating strains hydrostatically it is possible to write down a closed system 
describing the processes in the relaxirig media as follows: 

p( d + du:,) +px, = (1) 

pt+~u~pxA+pu:,=o (2) 

pt + Mu'x,= N (3) 

a, + = Q (4) 

where p is density, p is pressure, U' are speed components (i= 1, . . . , n) A is the intrinsic 
variable, F' ace the extend force components. For adiabatic processes M and N are 
connected with intrinsic energy B( p, p. A) and kinetic function Q( p, p, A)  by the follow- 
ing relations: .~~ 

M =  (P-P28pP)l(P~pP)3 N=-QB d 8 P .  (5 )  

Let the functions Q(p, T, A) and p-' = V(p, T, A) be expanded near the equilibrium 
Q(p0, TO, &)=O into the power series 

where VO= V(P0, TO, &) is the specific volume in the equilibrium state. 
On excluding the terms A-& and dA/dt from (4) and (6), taking derivative of (6) 

with respect to time and making use of the first law of thermodynamics we obtain the 
following relation: 

~ - P o = ~ o ~ ~ ~ / ~ o o [ ~ ( ~ ) ( V / V o ) ~ * ~  11- TTV dpldt- ZTP/(XT~O) dVldt 

- rvCv~~v/Vo dT/dt (7) 
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where Sis entropy, C,, is the adiabatic sound velocity in the state of dynamical (frozen) 
equilibrium (w=m, w = t i '  is the characteristic frequency of the process). d/dt= 
a/a t+d  alax' 

CV, is the thermal capacity for constant volume in a state of dynamical (frozen) 
equilibrium (w-w), CT, is the isothermal sound velocity when @ a m ,  y m = r v + l ,  
pa = vi1 

According to [6 ]  we use designations (aQ/a;l),,= z&. Quantities tpV, T ~ ,  zpv are 
called relaxation times. ~ .~ 

We investigate equation (7) for different zm/to, zpv / to ,  TTp/tO ratios. 
For ~ ~ ~ / t ~ < < l .  S=constant, v(S)=l, the equation formally identical to that for 

multicomponent media [3] follows from equation (7) :  

Here qv= ( X T / T ~ ~ ) - '  is volume viscosity index. 
The term (V/V0)-' may be neglected for condensed media. 
For rpv/ta<<l, rTp/to<< 1 one can obtain from ( 7 ) :  

which is a nonlinear generalization of the Maxwell equation. 
For sm/to<<l, zpv/fo<<l, o(S)= 1 we obtain from (7)  the following equation: 

Equation (10) was postulated by Lyakhov when deriving the governing equation for 
relaxing components [3]. 

In the limiting case when zTv/to*O, zpv/to*O, zTP/tO=-O, equation (7) becomes 
identical to the Tait equation of  state^: 

- .  

used in the absence of relaxing processes for a complete equilibrium state. 
The applicability region of equations (8)-(IO) describing viscous and viscoelastic 

media can be obtained by means of (7). It is known, from the general theory of non- 
equilibria processes, that for condition zi/to<< 1 the relaxation process may be described 
as a 'viscous' process, while the remaining (n  - 1) processes must be considered as 
relaxation processes. Only if all the relaxing times zi for the frequency band w =t i '  
(frequencies used in the measurements) satisfy the condition zjw<<l,  can we say that 
the relaxation process is of visco-elastic origin. 
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3. 00 the self-similar quasiperiodic soIutioos of hydrodpamical systems for 
active media 

Throughout the remainder of this work we concern ourselves with self-similar solutions 
investigations [7 ,8] .  

V A Danylenko et a1 

Let us consider the hydrodynamical system closed by (8): 

d+12dx,+p-'f7x*=s~ 
PI + d P ,  + P d ,  = 0 

(12) 
L .  
P 

f7t+U$x,+- U:,= KPY-B. 

Here the transition to dimensionless variables is made: t*t/rw, x-x( po/po)"2/r.rv, 
U-U(PO/PO)"~, P*P/Po. P*f7=Po'[P+ (Poc&)/Y-Pol, K=PoC&/(YPo). L =  
qvp;/zT~. For simplicity, the tilde over the p variable will be omitted. 

By straightforward calculations one can determine that system (12) is invariant 
under the Galilei algebra AG(n) spanned by the following operators: 

i ,a ,b=l ,  ..., n. 
a a  

ax. a ~ .  G. = t --+ - 

For some special cases the symmetry of (12) is wider than AG(n). If L=O, y=  1, and 
F= yp ,  this system admits an extra one-parameter group generated by the operator 
D=pa/ap+pa/ap. This makes it possible to choose some new variables enabling one 
to pass, in the case of one spatial variable from (12), to a system of two ODE plus one 
quadrature. Using the ansatz 

U= p + U(W) w = x - p t  

P = exp[ 5t + s ( w ) l  
(15) 

P=ZW exp[ et+ S(w)l 
derived from the symmetry of (12)  with respect to the group generated by 8= 
P0+pP1 +CO, we obtain an ODE system which does not contain the S variable in 
explicit form. Functions U and 2 satisfy the equations 

- U( K - Cz- y u )  UF dU 
d r  
-_ 

(16) 
E=zF+ u2(z- K )  
d r  

Here d/dr = -U3 d/dw, o = 1 + e. 
Thesystem (16) has thefollowingcriticalpoints ( c p ) : A , ( U = O = Z ) ,  A,(U=O, Z= 

K ) ,  B(U=-&/y,  Z=K). For all values of the parameters, A I  is an unstable nodal 
point. When U approaches zero, A2 goes to infinity. If o= 1 then A2 and B coincide. 
If c < O  then A2 is an unstable nodal point. If c = O  then B(A2) is a saddle-nodal point. 
When 6 > 0, then A2 is a saddle. 

, To analyse the behaviour of the critical point B with change of parameter 
values let us consider the linear part of the RHS of (16) in the vicinity of the point 
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Uo=-tr /y ,  & = K .  Introducing the new variables x = U - U 0 , y = 2 - 2 ~ ,  inserting 
them into (16) and retaining only the linear part of the RHS we obtain 

Eigenvalues of the matrix M are given by 

2&,2= K[( : T I C -  1 * [[( T K -  1 1 - 4  -$TI. 

K -  (;T-~ - -0 

(18) 

It follows from (18) that if 5 <0, then B is a saddle point. If 5 > 0 then B is stable node 
or focus. 

Let us analyse the possibility of the limit cycle (LC) existence in the vicinity of B. 
When t > O ,  there exists the manifold defined by the expression 

where eigenvalues of fi become purely imaginary. As a bifurcation parameter we take 
y. assuming that c=constant and  constant. It is easy to very that, with these 
assumptions, Andronov-Hopf theorem conditions [9] are satisfied. So the parameter 
y passing through the critical value ym= *fl, shows the creation of a limit cycle. 

Taking advantage of the rules for calculating the k s t  Floquet index 191 we can state 
that the limit cycle is stable provided that y,,<O. 

The global phase portrait of system (16) for the case in question is presented in 
figure 1. Note that the directions of the trajectories in the RHS half-plane of figure 1 

z 

V 

Fig~re 1.  Global phase portrait of system (16). 

are inverted. This is due to the ‘time’ signature change that occurs when passing to the 
old independent variable r-w. 

So there exist values of the parameters for which the system (12) possess a family 
of quasiperiodic solutions. 
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In section 2 we introduced an intrinsic variable 2. to describe hydrodynamical relax- 
ing media and then obtained goveming equations under the assumption that the pro- 
cesses described are not far from equilibrium. Now we investigate the properties of 
hydrodynamic systems for relaxing media without such a supposition. 

To employ similarity theory methods for qualitative study of the system (1)-(4) 
solutions we look for special cases when state and kinetic functions are not rigidly fixed 
and, simultaneously, symmetry of the system is sufficiently large. Based on the group 
classification performed in [1,4] it is possible to point out two cases when the kinetic 
function is quite general an& at the same time, symmetry of the system unables one, 
making group-theoretical reduction 171, to obtain two-dimensional systems of ODE. 

In both cases the intrinsic energy is as follows: 

where q>O, m> 1. From (5) and (19) we obtain with ease that 

M =  up N = q ( u -  l)pQ. 

First we assume that n= 1, Q=g(L)q(p/p)f-' and F=pyf- ' .  With this assumption 
it is not difficult to see that the system (1)-(4) admits a one-parameter Lie group 
generated by the following operator: 

a a  
2 = 1 - + x -  

at ax 

Solving equation &=O we can build the following ansatz 

U =  U(0)  + w w = x / t  

p=expS(w) p = Z ( o )  expS(0) a= L ( W )  

Inserting (20) into (1)-(4), after some algebraic manipulation we obtain 

(21) 

(22) 

(23) 

d 
dz 

d 
d r  

d 
d r  

d 
d r  

- U =  U { V -  02- U(y- U ) }  = U@ 

- z = ( ~ z - U ~ ) [ Y + ( l - m ) z ] + z ( 1 - u ) o  

- L 5 (GZ- U')Q 

(24) - s= ( U2-  G z ) [  1 + @] 

where Y=q(o-l)Q, Q=g(L)q(Z), d/dr=Ad/du, A = U ( c Z -  U'). 
Let g(L)-1. In this case we can restrict ourselves to the analysis of the two- 

dimensional system (21), (22). One of the critical points of this system'is given by the 
following equations: 

U(y - U )  + z=o (25) 
Y = (m - 1)Z. (26) 
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Assume that ZI>O is the solution of (26). Then another coordinateof’c~ could be 
obtained from (25 ) :  

Y + & & G i Z  U1 = 
2 

#(27) 

where &=%I.  
Let us determine whether or not the Andronov-Ropf theorem conditions are ful- 

filled. Function Y in the vicinity of the point 21 could be expressed in the following 
form: 

Y =(e- 1)Z1+5(Z-Z,) + 7 7 f 2 - 2 1 ) 2 + ~ ( z - 2 1 ) 3 + .  ~ ._ (28) 

Now passing to the variables X= U- U1, Y = Z - &  and Iinearizing (21) and (22) in 
the vicinity of the origin we obtain 

Eigenvalues of matrix I? will be purely imaginary provided that sp R-0 and de tx  >O. 
From the 6rst condition we obtain the following relation: 

. .  
y2[?- ga- 1 j - =z1fe +1)*. (30) 

The second condition will be satisfied if E =  y/l yI (see formula (27)) and 

As a bifurcation parameter we choose y. Denote a critical value (given by fomuIa 
(30))  by yo. The real part of the operator l? in the vicinity of the critical value yo could 
be expressed as a function of the canonical parameter p = y - yo : 

Now it is not difficult to see that the conditions of the Andronov-Hopf theorem are 
satisfied, and in the vicinity of the critical value p =O creation of a limit cycle takes 
place. 

To analyse the stability of LC we estimate both s i p s  of A and the first Floquet 
index Re Cl(p) when p =O. Taking advantage of (31) we easily obtain that 

sw A = - s ~  yo. 

The estimation of Re, C(0) sign is much more tedious than that of A so we reproduce 
here, without proof, the result obtained in [IO]: 

Proposition I .  When 
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then for any ZI , y and o that satisfy (31) Re C1(0)>O. In the general case, when the 
decomposition (28) has been performed, the following representation holds: 

V A Danylenko et a1 

ReCdo)=F(Iy~l, U, 21). (33) 

Now we are able to formulate the following statement: 

Theorem 1. If in the vicinity of a point Z1>O, the kinetic function'Y(2) has the 
decomposition (28) and parameters 5, U satisfy inequality (31) then there exists an 
open interval ZcR' in the vicinity of the critical value 

such that for yeZ the system (21), (22) possesses a family of stable quasiperiodic 
solutions. 

Remark. Taking yo with opposite sign we can obtain in the vicinity of this value a 
family of quasiperiodic unstable solutions. 

The result obtained was verified by straightforward numerical calculations (figure 
2). Function Y was taken in the simplest triangular form: 

4.w- 
-0.40 -0.20 -000 0.20 E.40 os0  

x 

Figure 2. Trajectories of system (Zl), (22) in the vicinity of the critical point A obtained by 
straightforward numerical calculations by means of Runge-Kutta methods. 

(o-l)Z, +{(Z-Zd i f Z o < Z < Z l + h  
Y = (c-l)Z,- < [ Z -  (Z1+2h)l if Zl+h<Z<Z2 (34) 

1 0  ifzmo, Zzl 

where Zo=Zl (5  - U+ 1)/{, Zz=2(Z1 +h) -Zo h> 0. 
Now let us consider the second case. Assume that Q = Q ( p / p )  and .%=py, y =  

constant. It is not difficult to show that under these conditions the system (1)-(4) in 
the one-dimensional case (n= 1) admits a Lie group generated by the operator 

Z=Po+pPI + aD. (35) 
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Let us introduce the following ansatz based on the invariants of the operator (35): 

u=U(w)  p=exp ( a t ) R ( o )  p=exp(at)iI(w). 
n = q o )  w= x - p t .  

(36) 

Inserting (36) into (1)-(4) we obtain an ODE system which does not depend on the L 
variable explicitly, so we can reduce the problem to three-dimensional system analysis. 
One more equation could be dropped by taking advantage of the following ansatz: 

U= W +  p ,  R = exp S(o) II = Z exp S(w) (37) 

making the S variable cyclic. Variables Wand Z satisfy the following system: 

-_ dZ-Z(l-e)[yW+aZ- w ( z ) ] + y ( z ) ( W * - Q z )  
d r  

where d/dr=Ad/dw, A =  W ( W z - o Z ) ,  y f ( Z ) = q ( ~ - l ) Q ( Z ) .  

the decomposition 
Assume that ~ ( 2 )  intersects transversally the 02 axis at some point Zl > 0. Then 

Y =C(Z-Z, )  + 7 / ( Z - Z , ) Z + x ( Z - Z 1 ) ~ + .  . . . (39) 

with c#O holds. 
The point C of phase plane with coordinates W =  -aZ, /y ,  Z =  2, is a critical point 

of (38). Passing to new variables x =  W + a Z , / y ,  y = Z - Z ,  and linearizing the system 
in the vicinity of the origin we obtain 

where 

d V / U I  z- zI 

From the condition sp a= 0 we calculate a ; 

Analysis of the condition det A b 0  gives E =  +1 and the following inequality: 

As a bifurcation parameter we choose p = y - yo where yo is a k e d  value for which 
the inequality (41) is satisfied. Assuming that a =a(c ,  2, , yo), it is not difficult to show 
that the conditions of the Andronov-Hopf theorem [9] are satisfied, so p, being in the 
vicinity of the critical value p,,=O, LC creation takes place. 

The limit cycle is stable provided that A Re C, (p) < 0 for .U = 0. As in the previous 
case we are able to formulate the following statement [IO]: 
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Proposition 2. Suppose that Y has the decomposition (39) and inequality (41) holds. 
Then the first Floquet index could be represented as follows: 

V A Danylenko et a1 

Re Cl(0) = 5(@*+Srj2) + x K 2  + yH (42) 
where @, S, K and H are functions depending on cr, ZI , 151 and I yo1 . 

For A the following relations are true: 

Note that the last equality is a consequence of (41). 
So it is possible to formulate 

Theorem 2. If function ~ ( 2 )  intersects transversally the OZ axis in some point 21 >0, 
there exists an open interval Z c R 1  such that for y.sZ the system (38) possesses a one- 
parameter family of stable quasiperiodic solutions. 

Remark. It is obvious that as long as the parameters r j  and x in formula (42) are small, 
a stable LC will occur for y < 0, but generally speaking this is not true. 

6.50 

U 0  

2 
5.60 

5.w 

hl 

Figure 3. Phase portrait of system (38) in the vicinity of the critical point A for y =  1, I. 
yo= 1. c=2 and Y given by formula (44). 

Figure 3 shows the phase portrait of system (38) in the vicinity of the critical point 
A for Y(Z)  given by the following expression: 

when IZ-Zl/ >2. 

Thus we have shown that the system (1)-(4) possesses invariant quasiperiodic solu- 
tions for kinetic equations of a quite general form. 

Perhaps the necessary condition for the existence of quasiperiodic invariant solutions 
of hydrodynamical equations could be the presence of mass force in the Euler equation. 
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This supposition is backed by the fact that qualitative analysis of the invariant solutions 
of hydrodynamical equations without extemal forces has been performed many t h e s  
(for comprehensive survey see [E], see also [l l]), and quasiperiodic solutions were never 
found. 

In conclusion let us briefly discuss the system (21)-(23) in the case when 
g(L)  #constant. It .is not difficult to see that all the critical points of this system are 
degenerate. 

If, for any L1 > 0 and Zl > 0, the equation Y(L, 2) = (a - l)Z is satisfied, then in 
the vicinity of Zl the function Y could be represented by (28) with c=  
q(u- l)g(LI)@(Zl), etc. And when the inequality (31) holds the linearization matrix 
of the system (21)-(23) in the vicinity of the critical point A( W , ,  Z, , L,) has one zero 
and two purely imaginary eigenvalues. As was shown in [ 121 such a degeneracy might 
be removed by a two-parameter family of small perturbations and, depending on the 
values of the parameters, one can obtain various solutions such as limit cycles, double 
cycles and, hally. homoclinic loops. The presence of the closed loops in the phase 
portrait of system (21)-(23) enables us to conclude that deterministic chaotic preturbu- 
lent solutions as well as quasiperiodic ones are inherent to the initial system. 
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